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Many technical problems require a study of the oscillations of thin- 
walled elements of the shell-type under high-frequency excitation. If 
the wave number is sufficiently large, asymptotic expressions may be con- 
structed to represent the form of oscillation. These expressions hold 
everywhere except in the regions bordering on the contour or in regions 
containing lines of distortion; the asymptotic expressions do not, in 

general, satisfy boundary conditions. Tests show that thin-walled ele- 

ments fracture from fatigue most frequently near lines of distortion. 
This suggests the idea of seeking solutions which would satisfy all 
boundary conditions and conditions on the lines of distortion, and which 
would reduce to the asymptotic expressions when receding into the internal 
region. The solutions found for a bounded region are reminiscent of the 
solutions which described the simple edge effect in the static calculation 
of shells. By analogy with the static edge effect, we shall call a devi- 
ation from the asymptotic expressions near distortion lines the dynamic 

edge effect. We shall see later that such an analogy has special signi- 
ficance. 

By a separation of the solution of the equations of shell oscillation 
into an asymptotic solution for an internal region and a solution de- 
scribing the dynamic edge effect, we obtain an effective method for solv- 
ing different dynamic problems in the theory of plates and shells. The 
method may be applied to the spectrum analysis of natural oscillations, 
as well as to the estimation of stresses near a line of distortion for 
forced oscillations. The higher the order of oscillation frequencies the 
smaller the error*. In this connection, the asymptotic method successfully 

* At the same time it must be kept in mind that with high-frequency 
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complements the linear variational methods usually applied for the solu- 

tion of shell problems, methods which give results only for low fre- 

quencies and modes of oscillations. 

The concept of a dynamic edge effect was introduced in [ 1 1. Here, 

the concept was applied successfully to determine the frequencies and the 

natural modes of oscillation of rectangular plates, as well as to esti- 

mate the strength of plates under forced oscillations with a continuous 

excitation spectrum. The asymptotic method was applied in [ 2 1 to the 

study of the spectra of natural oscillations of different types of 

plates and the results were compared with those obtained by other methods. 

The theory of the dynamic edge effect is given below for shells, to- 

gether with a classification of the different types of edge effect for 

shells having a positive, zero or negative Gaussian curvature; also in- 

cluded are methods of calculation of the characteristics of the edge 

effect near lines of distortion according to the well-known theory for 

an internal region. The version of the equations of shell theory for a 

state with large exponents of variation was employed, and extensive use 

has been made of the terminology of [ 3 I . 

1. Basic assumptions. We consider a thin shell undergoing free 

elastic oscillations of sufficiently small amplitude. We refer the 

middle surface of the shell to an orthogonal system of curvilinear co- 

ordinates (I, B, and assume that the lines of distortion y (for example, 

the contour boundaries or the axes of stiffening elements) coincide with 

lines a = const or /3 = const. We limit consideration to those modes of 

oscillation which correspond to large values of the exponent of variation 

(large wave numbers). For such modes the equations of shell theory may 

be taken in the form 

(I.11 

Here, UI is the normal deflection, 4 a function of the tangential 

forces, 9 the intensity of the normal load, E the elastic modulus, h the 

shell thickness, D the shell stiffness, A and B the Lam6 coefficients of 

oscillations the classical theory of plates and shells may be UnSUit- 

able and must be replaced by exact equations taking aCCOUUt of the 

effects of shear and rotary inertia. 
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the middle surface, R, and R, the radii of curvature corresponding to 

the lines @ = const and a = const, and b is the Laplace operator for the 

middle surface 

We shall seek solutions of the system (1.1) for a certain region L? 

bordering upon the line of distortion y. We consider the dimensions of 

the region Q to be small in order that changes in the metric of the 

middle surface inside this region may be neglected, thus setting A = 

const, B = const, R, ij: const, R, = const. At the same time the region Q 
must be large enough so that many half-waves can be included (Fig. 1). 

These requirements will always be met by modes of oscillation with high 

values of the exponent of variation. 

By the introduction 

a system of equations 

Fig. 1. 

of new variables Ada= Bdp= dx,, we obtain 

which replaces (1.1). 

The intensity of the normal inertia forces has replaced q in the 
first equation, with y being the density of the shell material and g the 
acceleration of gravity; tangential components of the inertia forces may 

be neglected for modes of oscillation with high exponents of variation. 

The substitution of expressions 

21' (a~, 22, t)= w. (3~1, 22) exp (iot) 

q (71, ~2, t)= 'p, (XI, z-2) exp (iot) 
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into Equations (1.21, where w*(xl, x,) and 4,(x,, x2) are the forms of 

oscillation and o is the real frequency, leads to the equations 

The second equation will be satisfied if one sets 

w* = nnql*, ‘p, = _ Eli (1.4) 

lhen the first equation takes the form 

It is not difficult to see that 

$), = $0 sin X-1 (21 - .Tl") sin h-2 (22 - 52’) (/cl=+ k,=$ (1.6) 

is a solution of Equation (1.5). 

Here, A, and A, are half-wavelengths in the directions offl= const 

and a = const (Fig. l), x1' and rz" are certain limiting phases, and +a 

is a normalizing constant. Under certain conditions, which will be 

established later, and for a certain choice of the limiting phases x1' 

and x2', Expression (1.6) may be considered as an asymptotic expression 

for the forms of natural oscillation, applicable everywhere except in a 

region fly bordering upon the lines of distortion y (it satisfies condi- 

tions on the lines of distortion only in the case where the lines of dis- 

tortion represent a supported edge). 'lhe corresponding asymptotic ex- 

pression for the frequency w has the form 

We shall seek those solutions of Equation (1.5) which satisfy all con- 

ditions on the lines of distortion y and which approach the solution 

(1.6) asymptotically as the internal region increases. If such solutions 

exist, then the dynamic edge effect exists also. In the opposite case we 

shall speak of a degeneration of the dynamic edge effect. 

Assume that the line of distortion coincides with the line x1 = 0. We 

seek a solution in the neighborhood of the line of distortion in the form 

+. (x1,52) = Y? (x1) sin k2 (22 - 227 
(14 

where 'JJ (xl) is a function as yet unknown. Substitution in (1.5) gives 
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yvIII _ 4,$,2yV’ + 6k24Y’v - 4k2FV” + kzsY -I 

2W y 
&Ra 

+ $ y) - s (yrv - 2k22Y” + k24Y) = 0 (1.9) 

The assumption that \p= Cesxl, where C and s are constants, leads to 

the characteristic equation 

A (~2) =;: ~8 - 4,$,zs6 _t 
( 

f3,Q24 + + - - 
yho~ 4 

22 .G’ ) 

s - 

- 
C 

4k26 + g- 2k22 y@!!$) $ + k,S + !$ _ k,$$ = 0 (1.10) 

If the frequency o is determined by Formula (1.7), then it follows 

from (1.6) that Expression (1.10) contains two pure imaginary roots 

s1 2 = + ik,. ‘Obese roots may be conveniently separated out. By means of 

this separation we can convince ourselves that 

where 

A (s2) = A, (s2) (s2 + k12) 

A1 (s2) = s6 - (k? + 4ks2) s4 + 

+ h2 {2b2 + 5h2 - o(klZE; ,Q)Z [2b2 (& - j&) -+ kz2 (j&z - &)]}s2- 

Equation (1.11) is the basic equation which determines completely the 

properties of the dynamic edge effect for oscillations having the wave 

numbers k, and k,. 

2. Classification of the types of dynamic edge effect. 
(a) Assume that all the roots s2 of EQuation (1.11) are different, real 

and positive. lhen among the characteristic exponents s appear three 

different real negative values sj = - al, s4 = - a2, s5 = - a3. By the 

rejection of terms increasing with x1 in the general integral of (1.91 

we obtain 

Y (XI) = Cl sin km1 + C2 cos klm + C3 e-alxl + C4e-aaxI + C5e--aaxl (2.1) 

With this expression we may satisfy all four conditions on the edge 

x1 = 0. A fifth condition may be taken as a normalizing condition or as 

an initial condition. If the solution (1.6) for the internal region is 

normalized, then as the fifth condition we take the limiting relation 

lim Y (~1) =$o sin FE1 (m - ~1’) (2.2) 
Xl_ 

‘Ike limiting phase x1" may be found from this condition. 

lhus, if all the roots s2 are different, real and positive, then the 
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solution for a dynamic edge effect exists and is described by the last 
three terms of Expression (2.1). Since these terms decay and do not 
oscillate, we cali this effect nonosci 1 latory . 

b) For multiple real positive roots the edge effect remains non- 
oscillatory. lbus, if a2 = as, then the solution for the region border- 
ing on the edge x1 = 0 has the form 

y (zi) = c, sin k,z, f C, cos kiz, -/- c3e-b~X~ + cpe-Qxz i_ x C I 5 e-az*z (2.3) 

c) Assume that Equation (1.11) has one real positive root and two 
complex conjugate roots. Then among the characteristic exponents three 
exponents will be found which describe the dynamic edge effect: s3 = - aI, 
s4 = - a2 + i&, ss = - a2 - i&. ‘Ihe solution for a bounded region 
takes the form 

We call this edge effect oscillatory. 

d) If the equation A1(s2) = 0 has only one negative or zero root, 
then among the exponents sl, s2, . . . , s8 there will not be found three 
with real negative values. Thus, a solution cannot be constructed having 
the property (2.2) and be sufficiently arbitrary so as to satisfy the 
four conditions on the line x1 = 0. By analogy with the static edge 
effect t 3 I we speak of this as a degeneration of the dynamic edge effect. 

3. Certain special cases. We shall dwell on certain special cases 
which permit results to be obtained easily. 

a) The dynamic edge effect in plates. If R, -+ =, R, + 00, then E$ua- 
tion (1.11) simplifies and reduces to a product 

Al (~2) = (52 - k12 - 3k2") (s4 - 2k22 + kz*) = 0 (3.1) 

‘his corresponds to a separation of the system (1.3) into two equa- 

tions 

D/LAW* - ‘@$zq = 0, AA'p,=O 

‘lbe second equation describes the plane state of stress in the plate 
so that the corresponding roots of Equation (3.1) must be rejected. lbe 
solution for the bounded region is of the form 

U" (x1) -_ ~1 sin km + CZ cos km + C3 exp I--ZI (h2 -t 2k22)*/'l 
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lhree constants C,, C, and C, are sufficient to satisfy two conditions 

on the lines of distortion and the limiting condition (2.2). For the 

normal deflection ID*(x~, x2) we obtain the expression 

w. (~1, 52) = W (51) sin k2 (52 - ~2’) (3.2) 

where W(x,) is found from the formula 

W (xl) = ‘3”’ - 2k22Y” + k24Y (3.3) 

corresponding to the first of relations (1.4). 

Thus, we arrive at the formula 

W (21) = Cl’ sin klxl + C2* cos klrl + C3* exp L--z1 (k12 -I- 2kz’)“‘l (3.4) 

Here, C, *, C, * and C, * are certain new constants. Thus, we have a 

nonoscillatory edge effect in plates. 

b) Analog of the simple edge effect. Assume that k12 >> k22 near the 

edge x1 = 0. lhis signifies that the exponent of variation in the direc- 

tion a = const is small by comparison with the exponent of variation in 

the direction @ = const. Under this condition Equation (1.11) may be re- 

placed by the approximate equation 

A1 (s2) = 9 - k12s4 = 0 

Discarding the four zero roots and one positive root, the solution is 

represented in the form 

\k” (51) = Cl sin klxl + C2 cos klxl + C3e-klxl (3.5) 

It is not difficult to show that this solution is analogous to the 

simple edge effect in statics of shells. We start with the equation 

on the assumption that all conditions of applicability are satisfied 

[ 3 I . A substitution to(nl, t) = W(r,) exp (i o t) leads to the equation 

wIV + SDW ---$- 
yho2 w = 0 

As asymptotic expressions for the mode of oscillation and for the 

frequency we take, as usual 

W (XI) = wo sin kl (XI - XI’), 
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The characteristic equation 

A (s2) = s4 + B$ _ 7s = 0 

has roots s1 2 = f ik,, s - f k, . ‘Ihus, once more we are led to a 
solution of the type of (i’!)- . . 

‘Ihe result that the curvature shows no effect on the dynamic edge 
effect is not unexpected. The requirement k12 >> k22, in combination with 
the condition that k, is sufficiently large, leads to the shell behaving 
practically as a plate. We note that the solutioh is not as valuable in 
the dynamic problem as its static analog; in contrast to the static prob- 
lem it is completely contained in the solution (3.4) for k12 >> k22. 

c) Spherical shell. If R, = R,, then we are once more let to Equation 
(3.1). In contrast to the plate, the roots of the equation s4 - 2k22s2 + 

k24 = 0 are not superfluous here. The solution takes the form of (2.3): 

y? (~1) = Cl sin klzl + C2 cos klxl + C3 exp L---51 (k12 + 2kz2)‘/‘1 + 

+ C4 exp (-km) + z1C5 exp (-km) (3.6) 

Thus, we have a nonoscillating edge effect with multiple roots. It 
is worth noting that the radius of curvature does not enter into the 
solution (3.6). 

4. General case. Existence condition for the edge effect. 
Consider the most general equation (1.11) into which we introduce the 
nondimensional parameters 

‘lhe equation takes the form 

s2 _ (z12 + 4z,2) s.4 + z22 
II 

2212 + 5z22 _ 2212X (* - X) + 222 (I - X?] se2 _ 
(212 + 22212 

- z24 
r. 

z12 + ‘&-,2 _212U - x2) + 2z2a(i -xx) 

(212 + 222)" 1 = 0 (4.2) 

It has been shown that a solution for a type of dynamic edge effect 
may be constructed if Equation (4.2) has no negative or zero roots for 
s 2. According to a well-known theorem of Descartes, Equation (4.2) has 
o&y positive or complex conjugate roots for s 2 ’ if the coefficients ex- 
hibit a regular alternation of sign in sequenca. In this case, the 
relevant condition is that for the free negative term 

z12 + zz22 __ 212 (1 -x2) + 2222(1 -XI > 0 

(212 + z22)2 
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Consider this condition in more detail. We note that it is satisfied 

for all values of z1 and z2 if x > 1. Consequently, for R, > R, the 
dynamic edge effect always exists. In particular, it will always hold in 
shells of zero Gaussian curvature near a nonasymptotic edge. 

If x< 1, then the edge effect exists only 
for sufficiently high exponents of variation. 
We introduce polar coordinates 

a= r coscp, 22 = r sin cp 

‘lhe edge effect is not degenerate if 

r4 > 1 - X* + (1 - 2)” sinZ cp 
1 + sina cp 

Thus, for an asymptotic edge 
zero Gaussian curvature we have 
r> 1, or 

_- 
k12 + kz2 > l/&i 

(4.3) 

,in a shell of 
the condition 

(4.4) 

a4 08 

Fig. 2. 

‘lhe region of degeneration for different values of the ratio x=R,/R, 
is shown in Fig. 2. 

As an example, consider a cylindrical panel with a square shape and 
sides of 
are not, 

length a. For such a panel k, = mr/a, k, = nr/a, where m and n 
in general, integers. Condition (4.4) becomes 

m2 -+ n2>&1/12 (1 - p2) 

where p is Poisson’s ratio. If a/h = 100, R/a = 10, p = 0.25, then we 
must have m2 + n2 = 3.41 for a dynamic edge effect to exist. This condi- 
tion is fulfilled for m = 2, n = 1. If a/h = 100, R/a = 1, then we must 
have m2 + n2 = 34.1. We note that the static edge effect at an asymptotic 
edge for a shell of zero Gaussian curvature is always degenerate. 

For a shell of negative Gaussian curvature the region of degeneracy 
stretches along the z2 -axis (Fig. 2) with increasing 1x1 and vanishes as 
x+ - 00. 

5. General case. Type of dynamic edge effect. $r introduction 
of the variables 

s2 =s 2 . tt + f (z12 + 4%~~) (5.1) 

into Equation (4.2) we obtain 
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s*J + 3ps**2 + &I = 0 

where 

P = -${r” + 3 sin? cp [2x (1 -x) + (1 - x)2 sin2cp]} 

(5.3) 
q = - & {ra + 9r2 sin2cp [X (1 -x) - (1 -x)2 sin2 rp]} 

‘lhe discriminant of Equation (5.2) has the form 

P3 + q2 = - $sin4 cp (f - xfa f (r) (5.4) 

in which 

f (7g = rs + r4 [x2 + 10x (2 -- x) sin2 cp - 2 (1 - x)” sin4rpl + 

+ (1 - x) [2x - (1 - x) sin”q!P sin’cp (5.5) 

lbe edge effect oscillates if p3 + q2 > 0 and does not oscillate if 
p3 + q2 < 0. If p3 + q2 = 0, the solution has the form of (2.3). Condi- 
tion (4.3) is obviously fulfilled. 

Certain general statements may be made without difficulty from a study 
of Equations (5.4) and (5.5). If r + m, then the sign of f(F) is deter- 
mined by the sign of the first term and consequently p3 + q2 < 0. This 
result is quite natural* when one considers that for large exponents of 
variation a shell behaves practically as a plate. 

lhe edge effect may be shown to be oscillatory for small r. Ibis is 
true for shells of positive as well as negative Gaussian curvature. My 
for 0 < x< 1 is the edge effect nonoscillatory for all values of r. 

Indeed, in this region Equation (5.5) does not, in general, have positive 
real roots. 

Ihe behavior of the edge effect for different ratios x= A,,&, is 
shown in Fig. 3 as a frontal dimetric projection. ‘Ibe region of oscillat- 
ing edge effect is shown by the light shading and the region of degener- 
acy by the dense shading. 

Equation (4.2) is not suited to a study of the edge effect near a non- 
asymptotic edge for a shell of zero Gaussian curvature; in this case 
R1-. By introduction of the nondimensional parameters 

l Excluding the case of the spherical shell (x = 1) and the aualogy of 
the simple edge effect (sin C$ = 0) fox which p3 + g2 = 0 for all r. 
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and passage to polar coordinates [I = p cos 4, 5, = p sin q5, we obtain 
Equation (5.2) with the coefficients 

p=-+[p4-3 sin2 cp (2 - sina cp)l 

q = - 4 [pa - 9p2 sinzv (1 + sin2cp)l 

The discriminant 

~3 + q2 = - $ sin4cplps + p4 (1 - 10 sin” ‘p - 2 sin4 cp) - sin2 (p(2 - sin”cp)31; 

is positive if p < pO, where 

2p,4 = -1 + 10 sin”cp + 2 sin4 cp + (1 + 4 sin2 cp)“” (5.6) 

‘lhe region determined by the inequality p < pb is shown shaded in 
Fig. 4. 

Fig. 3. Fig. 4. 

For a closed circular cylindrical shell of radius R and length u we 
have k, = w/a, k, = n/R, where m and n are wave numbers. The condition 
p < pO takes the form 

m2 e 
( > 
nR 2 + n2 < $ po2 J 12 (1 - p”) (5.7) 

If this condition is fulfilled, the edge 
effect oscillates. For example, let aR = a, 
R/h = 100; then we have from (5.7) 

m” + 1~~ < 336 po2 

Fig. 5. 
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This condition is satisfied for very high frequencies if only n is 
not too small. 

6. Some applications. A series of applications of the theory of 
the dynamic edge effect in plates was considered in [ 1 1 and I2 I . Here, 
the theory is applied to the study of frequency spectra and the modes of 
natural oscillation for spherical panels clamped at the edges and bounded 
by four orthogonal lines of curvature (Fig. 5). 

The oscillations of such a shell are described by Equation (1.5) for 
R, = R, = R and the boundary conditions 

u*=z’*=w*2Lo 
ax1 

(xl = OmdXl = U) 

[I * * l 
(X2 = omdX2 = b) (6.1) 

Here u and v* are tangential displacements in the direction of x2 = const 

and x,*= const, respectively. 

Consider first a solution near the edge x1 = 0. We have, by analogy 

with Expression (1.8) 
(6.2) 

II. (51, SZ)= U (51) sin k2 (52 - 3~27, v* (Xl, x2)= v (Xl) cos k2 (x2 -x2o) 

we (XI, 22) = W (a) sin X.2 (~2 - ~29 

E3y the use of Formulas (3.3) and (3.6) we obtain 

liv (XI) = Cl* sin NISI + C2* cos klsl + Ca* exp I-m (h2 + 2 Ic~~)"z~ (6.3) 

where Cj* = (kr2 + k22)2Cj . Terms containing two integration constants 
drop out of the general solution (3.6). Nevertheless, these two constants 
appear again for the determination of the tangential displacements u* 
and v *’ 

We start from the system of equations in terms of displacements equiv- 
alent in their simplifying assumptions to the system (1.3): 

a2u* 1 -pi%* m+-- 1 + p a2v 
2 ax22 

+-- 
2 axlax 

-(&+j$!po 
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Upon substitution of (6.2), we obtain for R, = R, = R 

(6.5) 

For the determination of U and V, any two equations may be taken from 
the system (6.5), for example the first two. It is easy to see that the 
characteristic equation of a system consisting of the first two equations 
has two pairs of multiple roots equal to + k,. lherefore, for the con- 
struction of the solution for this system exhibiting the properties of 
the edge effect, two terms of the type lost from the solution (3.6) must 
be added to the particular solution UO(xl) and Vo(xl). The number of 
integration constants, therefore, still stands at five; i.e. the edge 
effect will be completely determinate. Actual calculations result in the 
formulas 

U (~1) = UO (xl) + C4e-lisl + z~CSC--~~~: 

V (xl) = VO (xl) - (C4 - ‘+i 2) e--zrl - sdT,e-“‘“I (6.6) 

It follows from the preceding discussion that the tangential edge con- 
ditions do not affect the normal deflection w*. This permits a simple 
finding of an asymptotic estimate of the natural frequencies and wave 
numbers. 

Upon application of the conditions W(0) = W’(0) = 0, we obtain from 
Expression (6.3) 

IV (21) = sin klxl - kl 
(k12 + 2k#” 

{cos klxl - exp I--51 (k12 + 2kz’)“‘l) (6.7) 

and analogously for the edge z1 = a 

W (~1) = c sin kl (a - xl) - ckl 
(k12 + 2ka2)” 

{cos kl (a - xl) - 

- exp [ - (a - 51) (k12 + 2ka2)“l} 

where c is a certain new constant. 

We now require that both solutions coincide in the interior of the 
region. It appears that this requirement may be met only with an error 
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of the order of 
E -k?Xp 1-G a (klS + 2k2q”J (6.8) 

We present the results without dwelling on the calculations. The solu- 
tions separate into symmetrical ones with respect to the middle surface 
of the shell (x1 = a/2) 

c= 1, mt k_lF = _ kl 
2 (k12 + 2k22)“z 

and antisyaznetrical solutions 

c=-I, _k;= kl 
(kl= + 2k# 

(6.9) 

(6.10) 

lhe parameter k, may be found for a given k, from Equations (6.9) and 
(6 .lO). 

We obtain analogous results by considering the dynamic edge effect at 
the edges x2 = 0 and x2 = b, together with the *pieced-together” solution 
for the internal region. A closed system of equations in k, and k, 
results. 

lhe modes of the free oscillations fall into four groups according to 
the type of symmetry. For the first type (symmetry in both directions) 
we have the system 

kla kl C&-=- 
2 (k12 + 2kz2)% ’ 

For antisymnetrical modes in both 

kla GUI-= kl 
2 (k12 + 2i~~~)“~ ’ 

We have two mixed types combining I. 

kzb ka 
cat-=--- 

2 (kz2 + 2k12)“’ 
(6.11) 

directions we have 

kzb UIl-.--= kz 
2 (kz2 + 2k12)“% 

(6.12) 

one equation from (6.11) and (6.12). 
The ratio v = k,/k, may be found from the equation 

y = 5 a-1 (1 - 2v-2)‘/z + 1/2nil 
b tan-’ (1 + Y ) + ‘/zmn 2 ‘/a 

(6.13) 

where the principal values of the inverse trigonometric functions are to 
be considered, and where m and n are positive integers (wave numbers). 

Equation (6.13) is easily solved by the method of successive approxi- 
mations, in which the zeroth approximation may be taken as the asymptotic 
value v = na/mb. 

Results calculated for the case a = b are given in the table, where 
- is the coefficient in the frequency formula (1.7) 
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gD ($7 = - 
yha4 

.4,2$-Eh 
DIP > 

Note that for the modes of oscillation for which k, = kz, Formulas 

(6.11) and (6.12) give 

hl = h, = a 
m + ‘IS 

(m = 1, 2, . . .) 

We find from this that a = 2(m+ l/3)'. 

TABLE 

m I I n Y 

1 1 1.0000 

t :. 2.0265 2.0000 

; a 3.0377 1.5079 
z 3 1 4.0432 1.0000 

2 5 2.0132 1.3370 
4 4 1.0000 

a/A, a/ Al Present 

method - 

413 413 3.556 
2.4372 1.2027 7.386 

713 713 10.889 
3.4688 1.1420 13.336 
3.4012 2.2556 16.656 
1013 1013 22.222 
4.4816 1.1084 21.313 
4.4366 2.2038 24.540 
4.3832 3.2784 29.960 
1313 1313 37.556 

- 

T -7 
Iguchi 

solution 

Percentage 

difference 

3.646 2.53 
7.437 0.69 

10.965 0.70 
13.395 0.42 
16.717 0.37 

- - 

24231 
- 
- 

0.36 
- 
- 

It is well known that this problem has no exact solution. For the 

clamped plate Iguchi [4 1 has a sufficiently accurate solution in a 
series of functions satisfying all edge conditions and limited to six 

terms. Evidently his value of the fundamental frequency may be considered 

as exact. 'lhe last columns of the table give a comparison with the results 

of Iguchi. 'lhe table shows that the difference between the results for 

m = n = 1 is not great. This confirms the idea that the solutions for the 

dynamic edge effect satisfy Equations (1.3) exactly and all edge condi- 

tions. Any error is due to the npieced-togethern solution constructed 

for two opposite edges, an error of the order estimated by Formula (6.8). 

By substitution of the values k, = k, = 4n/3 a in (6.8), we find 

c- exp(-2R/\/3) = 0.027, which is close to the difference shown in the 

last column of the table. As one might guess from the nature of the 

simplification, the method gives natural frequencies which are too low. 

lhe error for the higher frequencies will be less than that shown in the 

table, since the Iguchi method gives upper approximations. 
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